

Via monte Nero, 40/B - 21049 TRADATE (VA) ITALY Phone: +39 (0)331841070 - e-mail:datexel@datexel.it - www.datexel.it

Manuale Utente DAT 1485

CONVERTITORE UNIVERSALE DA TESTA – USCITA MODBUS RTU/ASCII SU RS485

DESCRIZIONE GENERALE

Tutti i dati condivisi da un modulo remoto comunicante con protocollo Modbus RTU / Modbus ASCII vengono mappati in tabelle, dove ad ogni dato viene associato un determinato indirizzo.

Ogni dato può essere di due tipi:

- "REGISTRO", costituito da 2 byte (word di 16 bit), può essere associato a ingressi o uscite analogiche, variabili, set-point, ecc...

- "COIL", costituito da 1 bit singolo, può essere associato a ingressi digitali, uscite digitali oppure a stati logici

Un registro può anche contenere l'immagine (specchio) di più coils, ad esempio i 16 ingressi digitali di un dispositivo possono essere letti o scritti come bit, quindi singolarmente, indirizzando il coil relativo ad ogni ingresso, oppure possono essere letti o scritti come un'unica porta indirizzando il registro associato, dove ogni bit corrisponde ad un coil.

Nel protocollo Modbus, i registri ed i coil si suddividono nei seguenti banchi di indirizzi:

0xxxx e 1xxxx = Coils (bit)

3xxxx e 4xxxx = Registri (word)

Per utilizzare le funzioni di lettura e/o scrittura dei registri e dei coils fare riferimento alle tabelle riportate nel seguente manuale.

E' possibile accedere ai registri interni del modulo tramite comando diretto Modbus RTU / Modbus ASCII.

La configurazione del modulo può essere eseguita attraverso l'unità master (PLC, SCADA, ecc...) oppure, in modo più semplice, tramite il software di configurazione "Modbus_3000_10000" scaricabile dal sito internet www.datexel.it nella sezione "Software & Driver".

Per una corretta installazione del dispositivo fare riferimento al datasheet del prodotto scaricabile dal sito internet www.datexel.it

Datexel srl si riserva il diritto di modificare il presente manuale per scopi tecnici o commerciali senza alcun preavviso.

Datexel srl si riserva il diritto di modificare in tutto o in parte le caratteristiche dei propri prodotti senza alcun preavviso ed in ogni momento.

FUNZIONI MODBUS SUPPORTATE

Modbus Function Code	Modbus Function	Description	(*) Maximum Reading/Writing	
01	Read Coil Status	Lettura Coils multipli (banco 0xxxx)	32 coils	
02	Read Input Status	Lettura Coils multipli (banco 1xxxx)	32 coils	
03	Read Holding Register	Lettura Registri multipli (banco 4xxxx)	16 registers	
04	Read Input Register	Lettura Registri multipli (banco 3xxxx)	16 registers	
05	Write Single Coil	Scrittura Coil singolo	1 coil	
06	Write Single Register	Scrittura Registro singolo	1 register	
15 (0x0F)	Write Multiple Coils	Scrittura Coils multipli	32 coils	
16 (0x10)	Write Multiple Registers	Scrittura Registri multipli	16 registers	

(*) Il massimo numero di registri scrivibili o leggibili tramite le funzioni modbus è da riferirsi in relazione ai registri/coil presenti nelle tabelle Mappatura Registri Modbus e Mappatura Coils. Nel caso venissero letti o scritti registri che non sono presenti nelle tabelle, il dispositivo fornisce un messaggio di eccezione.

STRUTTURA DEI REGISTRI

I registri interni dei dispositivi Modbus vengono rappresentati principalmente in due formati *Unsigned Integer* oppure *Signed Integer*. Nei registri con segno (Signed Integer), il bit più significativo rappresenta il segno del valore contenuto pertanto i valori rappresentati sono tra ±32767 mentre in quelli senza segno (Unsigned Integer) i valori rappresentati sono tra 0 e 65535. Quindi, nel caso in cui vengano letti registri Signed Integer e il valore fosse superiore a 32767, è necessario sottrarre 65536 dal valore letto per ottenere il vero valore con segno.

I registri hanno la seguente struttura a 16 bit (WORD):

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Descr	MSB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LSB
Byte	HB (1 byte)									LB (1	byte)					

Legenda

MSB → Bit più significativo (Most Significant Bit)

LSB → Bit meno significativo (Least Significant Bit)

HB → Parte alta del registro (High Byte)

LB → Parte bassa del registro (Low Byte)

MAPPATURA REGISTRI MODBUS

Modbus Register (base 1)	Modbus Register (base 0)	Description	Register Type/Format	Access	Storage
40001	0	Test		R/W	RAM
40002	1	Firmware[0]	-	RO	FW
40003	2	Firmware[1]	-	RO	FW
40004	3	Nome Apparato[0]	-	R/W	EEPROM
40005	4	Nome Apparato[1]	-	R/W	EEPROM
40006	5	Comunicazione	16-bit, Unsigned	R/W	EEPROM
40007	6	Indirizzo / Nodo	16-bit, Unsigned	R/W	EEPROM
40008	7	Ritardo RX/TX	16-bit, Unsigned	R/W	EEPROM
40009	8	Watchdog Timer	16-bit, Unsigned	R/W	EEPROM
40010	9	System Flags	16-bit, Unsigned	R/W	RAM/EEPROM
40011	10	Tipo Ingresso	16-bit, Unsigned	R/W	EEPROM
40012	11	Scala di Temperatura (°C,°F, K)	16-bit, Unsigned	R/W	EEPROM
40013	12	Offset Giunto (CJC)	16-bit, Signed	R/W	EEPROM
40014	13	Misura Giunto (CJC)	16-bit, Signed	R/W	RAM
40015	14	Valore/Misura Ingresso	Valore/Misura Ingresso 16-bit, Signed		RAM
40023	22	Valore Sync Ingresso	16-bit, Signed	R/W	RAM
40031	30	Offset Ingresso	16-bit, Signed	R/W	EEPROM

MAPPATURA COILS

Modbus Coil (base 1)	Modbus Coil (base 0)	Description	Register Type/Format	Access	Storage
00001	0	Input Break Status	1-bit	RO	RAM
00009	8	Watchdog Enable	1-bit	R/W	EEPROM
00010	9	Watchdog Event	1-bit	R/W	RAM
00011	10	Power-Up Event	1-bit	R/W	RAM
00012 (*)	11	Internal CJC Enable	1-bit	R/W	EEPROM

NOTE:

- 1. I registri ed i coils marcati nella colonna 'Access' con la dicitura RO sono registri di sola lettura (Read Only).
- 2. I registri ed i coils marcati nella colonna 'Access' con la dicitura R/W sono registri di lettura e scrittura (Read/Write).
- 3. I registri ed i coils marcati nella colonna 'Storage' con la dicitura EEPROM risiedono nella memoria non volatile pertanto mantengono il loro valore in modo permanente anche in caso di assenza di alimentazione.

Attenzione: questi registri/coils non devono essere scritti in modo continuativo perchè la EEPROM potrebbe danneggiarsi irrimediabilmente.

- 4. Per i moduli della serie DAT3000, il banco 0xxxx è lo specchio del banco 1xxxx, come il banco 3xxxx è lo specchio del banco 4xxxx, quindi ad esempio il primo registro può essere indirizzato indifferentemente come 30002 (con la funzione 04) o 40002 (con la funzione 03).
- FW → fisso da firmware. Il valore è definito nel firmware.
 EEPROM → il valore è memorizzato in una memoria non volatile in modo permanente (vedi nota 3).
 - RAM → il valore è memorizzato in una memoria volatile. In assenza di alimentazione il valore memorizzato viene azzerato.
- 6. (*) La funzione di abilitazione/disabilitazione della compensazione del giunto freddo interna è disponibile dalla versione firmware 1401. Per la precedente versione firmware, la compensazione del giunto freddo avviene in modo automatico ed è sempre attiva per gli ingressi termocoppia.

DESCRIZIONE REGISTRI MODBUS

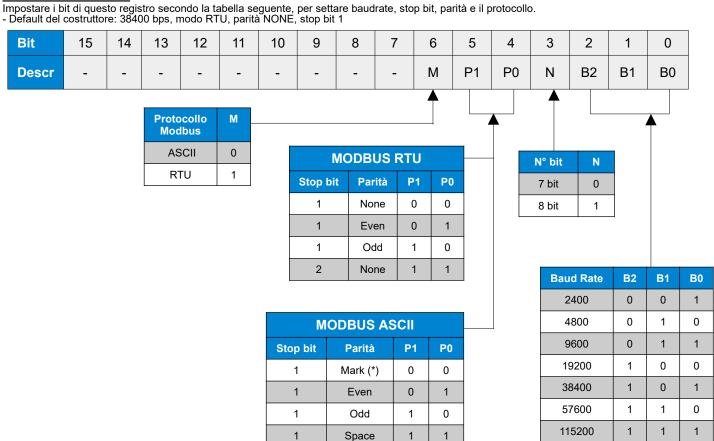
40001: TEST

Questo registro viene utilizzato per eseguire la funzione "Sincronismo" (vedi descrizione nella sezione "Procedure").

40002 / 40003: VERSIONE FIRMWARE (FIRMWARE)

Campo di 2 registri di sola lettura, che contiene l'identificativo firmware dato dal costruttore.

- Versione firmware: 1400 e successive


40004 / 40005: NOME APPARATO

Campo di 2 registri (4 byte o 4 caratteri ASCII) a disposizione dell'utente. Contiene il nome dell'apparato o una sigla che ne identifica la funzione all'interno dell'impianto. Ciascuno dei 4 byte può assumere qualsiasi valore da 0 a 255, quindi anche caratteri ASCII.

Il valore di default di questo campo contiene l'identificativo del modulo in caratteri ASCII

- Default del costruttore: "1485" (ASCII).

40006: COMUNICAZIONE

NOTE:

- Il numero di bit è ignorato, in quanto in modalità ASCII è fisso a 7 ed in modalità RTU è fisso a 8.
 In modalità RTU e in modalità ASCII, il numero di "Stop bit" è fisso in relazione alla configurazione della parità scelta
- (*) In modalità ASCII, la configurazione della parità "Mark" con 1 stop bit è equivalente alla configurazione "No Parity" (None) con 2 stop bit

40007: INDIRIZZO / NODO

Contiene l'indirizzo di rete del modulo; sono permessi gli indirizzi da 1 a 254.

Ogni modulo connesso alla stessa rete deve avere un indirizzo univoco.

L'indirizzo 255 è utilizzato per le funzioni broadcast (es. campionamento sincronizzato)

- Default del costruttore: 01

40008: RITARDO RX/TX

Indica il valore del tempo di ritardo tra la ricezione di un comando e la trasmissione della risposta espresso in millisecondi.

Default del costruttore: 01(1 ms.)

40009: WATCHDOG TIMER

Contiene il valore del timer WatchDog, espresso in step di 0,5 secondi. Se il WatchDog è abilitato e il modulo non riceve comandi per un tempo pari al valore contenuto in questo registro, scatta l'allarme WatchDog (vedi descrizione nella sezione "Procedure").

- Default del costruttore: 10 (5 sec.)

40010: SYSTEM FLAGS (COILS)

Questo registro contiene lo specchio della tabella dei Coils: ogni bit del registro corrisponde ad un coil secondo la tabella sotto riportata. E' possibile utilizzare questo registro per leggere o scrivere contemporaneamente tutti i coils senza dover implementare le funzioni specifiche di scrittura/lettura dei coils (01-02-15).

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Coil (*)	-	-	-	-	-	-	-	00	-	-	-	-	11	10	09	08
Descr	-	-	-	-	-	-	-	Break Status	1	-	-	-	CJC Enable	PW-UP Event	WDT Event	WDT Enable

Abilitazione ALLARME WATCHDOG (WDT Enable)

Abilita l'allarme di Watchdog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro 40013, scatta l'allarme di Watchdog (vedi descrizione nella sezione "Procedure").

0 = Watchdog disabilitato

1 = Watchdog abilitato

Evento ALLARME WATCHDOG (WDT Event)

Îndica lo stato dell'allarme WatchDog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro 40009, questo bit viene forzato a 1. Per annullare l'allarme settare questo bit a 0. Se il bit viene forzato a 1 tramite un comando dall'unità Master, sarà simulato un evento watchdog e verrà generata una condizione di allarme.

0 = Condizione normale

1 = Condizione di allarme

Evento POWER-UP (PW-UP Event)

Questo bit viene forzato a 1 ad ogni accensione, indicando che il modulo è stato spento oppure resettato. Scrivendo il bit a 0 e monitorando il suo stato, è possibile sapere se è avvenuto un reset del modulo.

0 = il modulo non si è resettato

1 = reset avvenuto

Abilitazione COMPENSAZIONE GIUNTO FREDDO (CJC Enable) - SOLO PER INGRESSI TERMOCOPPIA.

Abilita la compensazione del giunto freddo per gli ingressi termocoppia. Se il flag è abilitato, il dispositivo effettua la compensazione del giunto freddo utilizzando il sensore di temperatura al suo interno restituendo il valore di temperatura già compensato. Se il flag è disabilitato, la temperatura restituita è quella assoluta cioè con il giunto di riferimento a 0°C. 0 = CJC Interno disabilitato

1 = CJC Interno abilitato

SENSORE INTERROTTO (BREAK STATUS)

Quando il sensore collegato si trova in condizione di break (per la rottura del sensore, per il cavo scollegato o per la sovratemperatura), il coil corrispondente viene impostato a 1.

E' possibile utilizzare questo registro per leggere o scrivere contemporaneamente tutti i bit senza dover implementare le funzioni specifiche di scrittura/lettura dei coils (01-02-05). Durante la scrittura, i coils di sola lettura vengono mascherati.

NOTA: (*) Coils in base 0

40011: IMPOSTAZIONE TIPO INGRESSI (INPUT TYPE)

Contiene la programmazione del tipo di sensore collegato in ingresso.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Descr							•	Tipo In	gresso)						

Input Type	Value (Hex)	Value (Dec)
Disabilitato	00	0
90 mV	01	1
200 mV	02	2
800 mV	03	3

Input Type	Value (Hex)	Value (Dec)
Tc J	07	7
Tc K	08	8
Tc R	09	9
Tc S	0A	10
Tc T	0B	11
Tc B	0C	12
Tc E	0D	13
Tc N	0E	14

Input Type	Value (Hex)	Value (Dec)		
Res 2000 Ω	10	16		
Res 500 Ω	11	17		
Pt100	12	18		
Ni100	13	19		
Pt1000	14	20		
Ni1000	15	21		
Pot < 500 Ω	16	22		
Pot < 50 kΩ	17	23		

40012: SCALA DI TEMPERATURA

Con questo registro è possibile settare la scala di temperatura desiderata per la visualizzazione della misura. Questa opzione è valida solo se l'ingresso selezionato è una termoresistenza (RTD) oppure una termocoppia (Tc). Le scale di temperatura disponibili sono:

Value	Degree	Description
0	°C	Celsius
1	°F	Fahrenheit
2	К	Kelvin

Nota: nel caso di scala di temperatura Fahrenheit, il massimo valore di temperatura che è possibile visualizzare sul registro Input Value (40015) è 32000 (3200.0°F equivalente a 1760.0°C).

40013: OFFSET CJC

Offset della misura del giunto freddo per le termocoppie. Il valore è espresso in centesimi di grado, con segno.

40014: MISURA CJC (MEASURE CJC)
Indica la temperatura misurata sul giunto freddo delle termocoppie (temperatura del morsetto). Il valore è espresso in decimi di grado.

40015: VALORE INGRESSO (INPUT VALUE)

Questo registro restituisce la misura di ingresso, convertita in unità ingegneristiche.

Il numero di decimali e il formato numerico dipende dal tipo di ingresso, secondo la tabella sotto:

Input Type	Decimals	Format	
90 mV	2	Centesimo di mV	
200 mV	2	Centesimo di mV	
800 mV	1	Decimo di mV	
Termocoppie	1	Decimo di °C	
Pt100/Ni100	1	Decimo di °C	
Pt1000/Ni1000	1	Decimo di °C	
Res 2000 ohm	0	Ohm	
Res 500 ohm	1	Decimo di ohm	
Potenzionetro	1	Decimo di %	

40023: VALORE SINCRONISMO INGRESSO

Quando il modulo riceve il comando di Sincronismo (vedi descrizione nella sezione "Procedure"), il valore attuale dell'ingresso presente nel registro 40015 viene salvato in questo registro per poter essere riletto dall'utente in un secondo tempo.

40031: OFFSET INGRESSO (INPUT OFFSET)

Introduce un offset sulla misura. Il valore è espresso nello stesso formato dei registro di ingresso ed, nel caso di RTD o Tc, è indipendente dal tipo di scala di temperatura selezionata.

PROCEDURE

UTILIZZO DELLA FUNZIONE "INIT"

La funzione "INIT" consente di settare il dispositivo in configurazione di default, indipendentemente dalla programmazione memorizzata in EEprom.

La funzione di INIT forza modalità RTU, parità NONE, baud rate 9600, numero di bit = 8, bit di stop = 1, indirizzo 1

- Collegare alla rete RS485 solamente il dispositivo da programmare.
- Speanere il dispositivo.
- Togliere il copri-fessura sulla parte superiore del dispositivo e spostare lo switch che si trova all'interno in INIT (verso il foro centrale) .
- Accendere il dispositivo.
- Impostare la porta di comunicazione con i seguenti valori:

Modalità = Modbus RTU baud-rate = 9600 bps parità = None n° bit = 8 bit di stop = 1

- Il modulo risponde all'indirizzo 01 .
- Leggere o programmare le impostazioni desiderate nei registri:

40006: "Comunicazione" per l'impostazione del baud-rate 40007: "Indirizzo" per impostare l'indirizzo di rete del modulo

- Spegnere il dispositivo.
- Spostare lo switch verso l'esterno del dispositivo e richiudere la fessura con il suo copri-fessura.
- Accendere il dispositivo.
- Impostare la porta di comunicazione con il baud-rate programmato nel registro 40006.
- Il modulo risponde con l'indirizzo programmato nel registro 40007.

NOTA: La programmazione di default dei moduli in fase di produzione è la seguente:

Indirizzo: 01Baud-rate: 38400 bps

- Protocollo: RTU - Parità: None - Bit di stop: 1

WATCHDOG

Il dispositivo è provvisto del timer Watchdog il quale, se abilitato, fa scattare un allarme ogni volta che la comunicazione tra il modulo ed il master rimane inattiva per un tempo superiore a quello configurato nel registro 40009.

In condizione di allarme viene impostato a 1 il coil "Evento Watchdog".

Per uscire dalla condizione di allarme inviare un comando al dispositivo e resettare il coil "Evento Watchdog".

SINCRONISMO

La funzione di Sincronismo è costituita da un comando di Broadcast inviato a tutti i moduli della rete. Quando i moduli ricevono il comando di Sincronismo, il valore di ingresso viene salvato nell' apposito registro, per poter essere riletto in un secondo tempo. E' così possibile leggere il valore a cui si trovava l'ingresso nell'istante in cui è stato inviato il comando di Sincronismo.

Per inviare il comando di sincronismo, scrivere il valore 10 nel registro "Test" (40001), all'indirizzo di rete '255'.

NOTA: Il valore di sincronismo non viene salvato in eeprom, quindi all'accensione del modulo, il valore presente nei registro di sincronismo viene resettato.

ED.12.23 REV.02